If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+8X=167
We move all terms to the left:
X^2+8X-(167)=0
a = 1; b = 8; c = -167;
Δ = b2-4ac
Δ = 82-4·1·(-167)
Δ = 732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{732}=\sqrt{4*183}=\sqrt{4}*\sqrt{183}=2\sqrt{183}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{183}}{2*1}=\frac{-8-2\sqrt{183}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{183}}{2*1}=\frac{-8+2\sqrt{183}}{2} $
| 4(7x+5)=-4(7x-6) | | t-2=2t-95 | | -3(1-8p)+6p=237 | | 1/2/5x-8)=-9 | | x+.4x=1000 | | 2x12=4x | | 15x-5(x+10)=-20 | | p+16=3p | | 2y=y+47 | | 3r+7=-3+r | | 36x+70=4500 | | 7x-11=5x-24 | | ½x+6=81 | | 3a-15=a+19 | | 31x-100=4000 | | 3x+-1=-10+2x | | 10x-4=20x-20 | | 31x-100=4,000 | | 1.4x-4.2=-1.4 | | -18=2h | | 2x+84+51+59=180 | | t+1=2t-93 | | 0.6x+0.8=1/4 | | -1.1=22+1.1y | | B/4=8;b=56 | | -6(x-2)=-48 | | 3x-x+3=3x+17 | | -5/2n+5/3n=10 | | 3x+-x+2=x+5 | | 24=-4r | | 11=2−3y | | 3^(x-2)=42 |